• Виктор
  • Статьи
  • 2 мин. чтения

Жидкий литий избавил ионы в пучке от лишних электронов


Разделитель изотопов и сборка детекторов распада в лаборатории по исследованию пучков редких изотопов FRIB. / © https://www.ornl.gov/project/frib-decay-station / Автор: Messiena Lucretius

В стабильных изотопах количество нейтронов обычно варьируется в пределах нескольких штук, а у радиоактивных оно может изменяться в гораздо более широких пределах. К примеру, у стабильных изотопов никеля бывает от 30 до 36 нейтронов, а у радиоактивных — от 20 до 52. Если расположить все известные изотопы на карте, по осям которой отложены количества протонов и нейтронов, получится узкий «хребет стабильности» и широкие «отмели» радиоактивных изотопов.

Число возможных радиоактивных изотопов может составлять около шести тысяч, и пока ученые синтезировали лишь около половины из них. Изучение нестабильных изотопов с большим дисбалансом протонов и нейтронов представляет большой интерес — исследуя особенности их распада, физики шаг за шагом совершенствуют описание сил, удерживающих ядра воедино.

Изучать такие изотопы приходится буквально «на лету» — период их полураспада обычно составляет от десятых до тысячных долей секунды (но бывает и намного меньше). В 2022 году к этой работе приступила лаборатория FRIB (Facility for Rare Isotope Beams) университета штата Мичиган (Michigan State University).

Карта стабильности изотопов в зависимости от содержания протонов (по вертикали) и нейтронов (по горизонтали). Линиями отмечены количества протонов и нейтронов, придающие ядрам повышенную устойчивость. Черным показаны стабильные изотопы, остальные цвета соответствуют периоду полураспада: коричневый – миллионы лет, оранжевый – годы, зеленый – секунды. / © wikipedia.org

Процесс получения нестабильных изотопов в лаборатории FRIB реализован следующим образом. Сначала из тяжелого элемента, такого, как ксенон или уран, получают ионы, которые разгоняют и направляют в отделитель электронов (charge stripper). В нем ионы лишаются почти всех электронов и направляются в основной ускоритель, а оттуда пучок ионов попадает в мишень.

Сталкиваясь с ядрами мишени на скорости до половины световой, ядра пучка «разлетаются» на крупные фрагменты, которые сортируют магнитным полем и направляют в ловушку, окруженную детекторами распада. По энергиям и типам испущенных частиц ученые восстанавливают структуру ядра.

Сложность поджидала разработчиков новой установки на этапе отделения электронов, которое необходимо для повышения заряда ионов и эффективности их разгона перед мишенью. При столкновениях образуются ядра с самым разнообразным содержанием протонов и нейтронов, но многие изотопы при этом образуются слишком редко. Чтобы повысить темп их образования, нужно поднимать ток пучка ионов, а отделитель электронов этого не выдерживает.

Ожидаемая скорость образования изотопов на FRIB при максимальной интенсивности пучка (50 триллионов ионов урана в секунду). По горизонтали и вертикали — число нейтронов и протонов в ядре. Черной линией показана граница известных изотопов. Цветовая кодировка — логарифмическая, с увеличением значения на единицу темп образования ядер изотопа возрастает в 10 раз. Ноль соответствует 1 ядру в секунду (сине-зеленый цвет), 10 — десяти миллиардам в секунду (красный цвет). / © https://custipen.pku.edu.cn/fujian/rid4.pdf

В менее мощных ускорителях отделитель электронов состоит из графитовой фольги, но пролетая через нее, ионы разрушают кристаллическую структуру графита. Оказалось, что в пучке FRIB графит выгорает слишком быстро.

Исследователи во главе с Такудзи Канемурой (Takuji Kanemura) изобрели самовосстанавливающийся отделитель электронов, который обошел ограничение по мощности пучка. Для этого они использовали мощный поток расплавленного лития. Выбор именно этого металла связан с двумя факторами — легкие атомы лития не способны сильно рассеять летящий сквозь него пучок тяжелых ионов, а высокая температура его кипения предотвращает нарушение вакуума, который необходим для поддержания пучка.

Изображение и схема литиевого отделителя электронов. Зеленым показано сопло, синим — дефлектор, красным — траектория пучка ионов, а серым — струя лития, которая превращается дефлектором в пленку, а внизу разбивается на капли. На дефлекторе видны капли смачивающего его расплавленного лития. / © Facility for Rare Isotope Beams

В жидкометаллическом отделителе электронов струя расплавленного лития выходит из сопла и ударяется о край дефлектора, который превращает ее в пленку толщиной 10 — 20 микрометров, летящую со скоростью до 180 километров в час. Пучок проходит через эту пленку, но каждый объем расплава подвергается его действию лишь на очень короткое время, и не успевает нагреться и вскипеть. С помощью литиевого отделителя исследователи смогли поднять мощность пучка до 400 киловатт.

Похожее решение используется в сверхъярких рентгеновских трубках. Их анод представляет собой струю металлического галлия, способную выдержать сфокусированный электронный луч такой мощности, которая испарила бы даже самые тугоплавкие материалы.

Применение редких радиоактивных изотопов не ограничивается изучением ядерных сил. В установке FRIB образуется огромное количество изотопов — в том числе использующихся в ядерной медицине и других областях, — и ученые планируют собирать их для дальнейшего применения.

Кроме того, этот способ получения радиоактивных ядер может пригодиться при достижении «острова стабильности» на карте изотопов, который содержит сверхтяжелые элементы с интереснейшими химическими свойствами. К настоящему моменту ученые достигли только нестабильного нейтронно-недостаточного края этого «острова». В его центре могут отыскаться изотопы с периодами полураспада в миллионы лет, но продвинуться вглубь не дает проблема нейтронной недостаточности.

Обычно сверхтяжелые элементы синтезируют, бомбардируя трансурановую мишень легкими ядрами, и все достаточно устойчивые изотопы, из которых можно заранее приготовить «снаряды» и мишени, содержат слишком малые доли нейтронов. Нестабильные ядра могут содержать гораздо больше нейтронов: если удастся синтезировать их в достаточном количестве «на лету» и тут же отправлять в мишень, проблема нейтронного недостатка может оказаться преодоленной.


Source: https://oaoo.ru/nauka/jidkii-litii-izbavil-iony-v-pychke-ot-lishnih-elektronov.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Инженеры рассчитали самый эффективный способ выиграть марафон за чужой счет

Кенийский легкоатлет Элиуд Кипчоге во время марафона в Вене. / © Alex Halada, AFP / Автор: Regulus Tremerus...

Обнаружена самая долгоживущая экзотическая частица, которая изменит современную физику

Схема дважды открыто очарованного тетракварка Tcc+ / ©CERN / Автор: Никита Тарасов Курс физики в общеобразовательной школе дает...

Свет заставил воду испаряться без нагрева

Клубы светлого конденсата на стекле — это испарение воды из гидрогеля под действием зеленого света без нагрева /...

Китайские физики добились несомненного квантового превосходства

Juizhang вблизи. / © Chao-Yang Lu/University of Science and Technology of China / Автор: Анастасия Кожевникова Квантовым превосходством...

Инженеры напечатали 3D-структуру прочнее «аэрокосмического» сплава

Образец нового метаматериала в руках у одного из авторов исследования / © RMIT Метаматериалы — это искусственные материалы,...

Японские ученые научились предсказывать цунами по космическим частицам

Один из мюонных детекторов TS-HKMSDD / © Hiroyuki Tanaka, Muographix / Автор: Екатерина Лебедева Для многих густонаселенных прибрежных...

Ученые нашли материал с «памятью» о собственном прошлом

©POWERlab, EPFL / Автор: Telestis Scaevinius Диоксид ванадия (VO2) — материал, способный демонстрировать прямо противоположные свойства. При нагревании...

Умирающие звезды заподозрили в «засеве» космоса углеродными нанотрубками

Туманность Кольцо (NGC 6720, M 57 или Мессье 57) / ©AURA, STScI, NASA / Автор: Александр Литвинов Описание...

На корейском токамаке опробовали новый способ создания плазмы рекордной температуры

Конфигурация плазмы в KSTAR при использовании режима FIRE для повышения энергии плазмы. Шкала температуры плазмы приведена в килоэлектронвольтах,...

Физики синтезировали новый изотоп магния

©S.M. Wang, Fudan University & Facility for Rare Isotope Beams, MSU / Автор: Дмитрий Жуков Магний — 12-й...

Физики выяснили, почему поверхность айсбергов не гладкая

Форма тающего льда при разной температуре / © NYU’s Applied Mathematics Laboratory / Автор: Ольга Кузьмина В своем...

Время «жизни» бозона Хиггса наконец-то измерили почти точно

Визуализация обнаружения искомых субатомных частиц на детекторе CMS (Компактный мюонный соленоид) Большого адронного коллайдера. На модели показан результат...

Эксперимент по обнаружению аксионов и темных фотонов принес первые результаты

Трехмерная модель BREAD. Благодаря простоте устройства, его создание доступно небольшим командам ученых при скромном финансировании / © BREAD...

Умер российский физик-теоретик Валерий Рубаков

© Joachim Herz Stiftung / Автор: Godefridus Victorinus В городе Сарове Нижегородской области на 68-м году жизни скончался...

Новый материал позволит физикам ловить гравитационные волны ежедневно

Стекло с нанесенным покрытием из оксидов титана и германия / © Caltech / Автор: Иван Беляев С момента...

Крошечные подводные дюны могут рассказать о формировании рельефа Марса

© Flickr / Автор: Дмитрий Жуков Ученые из Университета Кампинас (Бразилия) и Калифорнийского университета в Лос-Анджелесе (США) подробно...

Большой адронный коллайдер возобновил работу после трехлетней модернизации

©CERN / Автор: Сергей Данилов Согласно официальному пресс-релизу, возобновление работы ускорителя ознаменовалось запуском двух пучков протонов в противоположных...

Умер Алексей Старобинский, стоявший у истоков открытия излучения Хокинга и гипотезы инфляции

Профессор факультета физики НИУ ВШЭ, академик РАН Алексей Старобинский / © ВШЭ / Автор: Euclio Drusus Алексей Старобинский...

Инженеры научились ускорять закипание воды

/ Автор: Regulus Tremerus Каждый из нас несколько раз в день включает чайник, чтобы вскипятить воду для любимого...

Физики не увидели распад ложного вакуума — вопреки тому, что написали СМИ

© Newcastle University / Автор: Lampronia Auxilius Многие российские СМИ дали новости вроде «Физики увидели распад ложного вакуума»....