• Виктор
  • Статьи
  • 2 мин. чтения

Магнитное поле помогло лазерам сжать капсулу с термоядерным топливом


Измеренное распределение плотности плазмы в момент сжатия в отсутствие магнитного поля (слева) и после приложения к капсуле поля 50 тесла (справа). Цвет обозначает плотность плазмы: желтый – 0,84 г/см3 (как у керосина). Размер изображения по вертикали – треть миллиметра. / © https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.195002 / Автор: Иван Беляев

Управляемый термоядерный синтез является самым привлекательным перспективным источником энергии на Земле. Слияние легких ядер высвобождает больше энергии, чем деление урана, и некоторые из видов термоядерного топлива распространены повсеместно. В каждом литре воды на Земле содержится 34 миллиграмма дейтерия, в которых скрывается почти в триста раз больше энергии, чем в литре бензина.

В природе термоядерный синтез происходит в недрах звезд, но «запрячь» его на Земле — крайне сложная задача. Как и следует из названия, для термоядерного синтеза топливо требуется перевести в состояние плазмы и нагреть до температуры звездных недр – десятков или сотен миллионов градусов. Ни один материал таких условий не выдержит.

Поначалу способы приручить термоядерную энергию разделялись на два класса — с магнитным и инерциальным удержанием плазмы. Первый способ использует тот факт, что магнитное поле препятствует движению заряженных частиц поперек силовых линий. Плазма, которая из них состоит, в достаточно сильном поле может некоторое время удерживаться, не касаясь стенок контейнера. В инерциальном удержании расчет на то, чтобы со всех сторон сжать и разогреть топливо, например с помощью сверхмощного лазера, — и сделать это настолько сильно и быстро, чтобы топливо зажглось, не успев разлететься.

Разработка обоих подходов встретила и продолжает встречать великое множество сложностей. Оказалось, что термоядерная плазма проявляет разнообразные неустойчивости, которые выбрасывают ее на стенки контейнера в первом случае, и не дают объему с топливом как следует сжаться — во втором. Как говорят, до управляемого термоядерного синтеза всегда остается тридцать лет, независимо от того, в каком году сделан прогноз.

Столкнувшись с трудностями, ученые стали совершенствовать и комбинировать способы удержания термоядерной плазмы. Одна из идей заключается в том, что если как следует «намагнитить» топливо, и затем обстрелять его лазерами, магнитное поле поможет плазме чуть дольше удерживаться в малом объеме, и большая часть топлива успеет прореагировать.

Исследовательская коллаборация под предводительством Массачусетского технологического института (MIT) и Ариджита Бозе изучила в экспериментах, что происходит с сильно намагниченной плазмой при сжатии и разогреве. В классической установке для инерциального синтеза капсулу с топливом диаметром около миллиметра облучают со всех сторон, чтобы создать как можно большую симметрию нагрева и сжатия. Внешняя поверхность капсулы испаряется, и реактивная сила толкает остальную часть ее стенки внутрь, сжимая топливо до плотности, в десятки раз большей, чем у свинца, и разогревая его до сотен миллионов градусов. Сферическая геометрия создает максимально возможную степень сжатия.

В магнитном поле имеется выделенное направление — силовые линии — и сферическая симметрия сжатия там невозможна. Вместо этого ученые предположили, что удержание плазмы магнитным полем компенсирует отход от идеальной симметрии.

Схема эксперимента магнитно-инерциального термоядерного синтеза. Серые стрелки показывают облучение лазером, красные – магнитное поле (Applied field). Внешняя испаряющаяся оболочка капсулы показана синим, внутренняя сжимающаяся оболочка – красным. Капсула заполнена газообразной смесью дейтерия с тритием. Сжатие увлекает силовые линии магнитного поля за собой (Flux compressed), как в установках по взрывному созданию импульсного магнитного поля. / © A. Bose, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.195002

В новых экспериментах ученые помещали капсулу с дейтерием и тритием в импульсную катушку, создающую поле до 50 тесла (поле на поверхности неодимового магнита составляет 1 тесла, а магнитное поле Земли — около 0,05 тысячных тесла). Такое сильное поле было нужно, чтобы «поймать» ионы, которые гораздо тяжелее электронов и меньше реагируют на магнитное поле. В токамаке поле составляет несколько тесла, и неудивительно, что в инерциальном эксперименте потребовалось еще более сильное поле. Лазеры облучали капсулу сверху и снизу.

Изображение плазмы в испущенных ей рентгеновских лучах в отсутствие поля (слева) и при его наличии (справа). / © A. Bose, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.195002

Оказалось, что магнитное поле до 8 тесла не влияет на имплозию капсулы, а в поле напряженностью 50 тесла облако плазмы сжалось вдоль силовых линий поля примерно вдвое сильнее, чем в отсутствие поля. Авторы исследования утверждают, что в их эксперименте именно таким образом сказывается уменьшение теплопроводности плазмы в магнитном поле, которое происходит за счет все того же препятствования движению ионов поперек силовых линий.

И немного о перспективах.

Зависимость планируемой даты запуска космического телескопа им. Джеймса Уэбба от текущей даты. © XKCD

С момента появления идеи термоядерных источников энергии прошло уже почти 70 лет, и сейчас инженеры и ученые надеются, что первые киловатт-часы отправятся с термоядерных электростанций в сеть около 2048 – 2051 года. Вспомним, однако, телескоп Джеймса Уэбба: его запуск тоже многократно отодвигался, но было подмечено, что планируемая дата его запуска зависит от даты, которую был сделан прогноз, примерно линейным образом, и две линии пересекаются в 2026 году. Сейчас на дворе 2022-й, а телескоп уже в космосе и готовится начать наблюдения. Надеемся, что с управляемым термоядерным синтезом будет похоже.


Source: https://oaoo.ru/nauka/magnitnoe-pole-pomoglo-lazeram-sjat-kapsyly-s-termoiadernym-toplivom.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

В России научились производить собственные мощные клистроны

Прототип разработанного в ИЯФ СО РАН клистрона успешно прошел двухмесячные тесты на стенде / ©Егор Быковский / Автор:...

Ученые обнаружили новую форму льда, которая может существовать в недрах Земли и на других планетах

© Flickr / Автор: Екатерина Лебедева Лед, как и другие твердые вещества, способен принимать разные формы, которые зависят...

Физики открыли новый вид магнетизма

© pinterest / Автор: Godefridus Victorinus Магнетизм — свойство, которым обладают одни материалы и не обладают другие. Это...

Поиском новых сверхпроводников займется квантовый аналоговый компьютер

Сканирующая электронная микроскопия квантовой аналоговой ячейки. Трехлучевые структуры в центре — «острова», светло-серые области — подложка, темно-серые области...

Физики показали, как пингвины-эгоисты достигают коллективного оптимума

Пингвины как активные частицы в скалярном поле. / © HHU / Alexandra V. Zampetaki / Автор: Артем Фомин...

Ручная стирка снизила количество микропластика в воде

Хотя ручная стирка занимает больше времени, ее вредное влияние на состояние окружающей среды гораздо меньше / © expreso.press...

Мозг не ищет кратчайший путь при планировании маршрута

Кроме того, оптимальный путь в одном направлении может не совпадать с оптимальным путем обратно (синий путь не совпадает...

Время «жизни» бозона Хиггса наконец-то измерили почти точно

Визуализация обнаружения искомых субатомных частиц на детекторе CMS (Компактный мюонный соленоид) Большого адронного коллайдера. На модели показан результат...

Разработана дешевая технология получения питьевой воды из сухого пустынного воздуха

Тестирование прототипа устройства для получения воды из воздуха с помощью новой супергигроскопичной полимерной пленки / © Youhong Guo...

Удачный эксперимент на новосибирском электрон-позитронном коллайдере отодвинул границу «новой физики»

Комплекс ВЭПП-4 – ВЭПП / ©ИЯФ СО РАН / Автор: Messiena Lucretius Специалисты из Института ядерной физики имени...

Получена новая кристаллическая форма кремния

Структура 4Н-кремния на фоне микрофотографии реального кристалла, полученной электронным микроскопом / ©Thomas Shiell, Timothy Strobel, Carnegie Institution for...

Это прорыв — созданы надежные кубиты в ультрахолодных полярных молекулах

Экспериментальная установка / © Gregory et al. / Автор: Владимир Богданов Одно из существенных ограничений при создании квантового...

«Атомный дырокол» превратил обычные материалы в компоненты квантовых компьютеров

«Атомный дырокол», созданный физиками / © Steve Zylius, UCI / Автор: Lampronia Auxilius Основу большинства современной вычислительной техники...

В погоне за миллионом кубитов

C. Lackner / Ars Electronica (CC BY-NC-ND) / Автор: Ptolemocratia Acerronius (Продолжение. Начало см. тут: 1, 2). В...

ЦЕРН приостанавливает сотрудничество с Россией из-за ситуации на Украине

Логотип Европейской организации по ядерным исследованиям на фоне макета нового образовательного и информационно-просветительского центра CERN Science Gateway /...

Физики предложили способ сделать квантовые компьютеры дешевле и практичнее

© Matthias Weinberger / flickr / Автор: Regulus Tremerus В своей работе исследователи использовали архитектуру квантового компьютера, основанную...

Энергия от окон: ученые изобрели почти прозрачные солнечные батареи

Небоскребы в Шанхае / ©Ermell, Wikimedia Commons / Автор: Ptolemocratia Acerronius Исследовательская группа из японского Университета Тохоку разработала...

Работу Большого адронного коллайдера остановили раньше срока из-за энергетического кризиса

БАК — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжелых ионов (ионов свинца) /...

Закручивание бумаги при печати объяснили с научной точки зрения

Кадр из сериала «Офис» / © nbc.com Бумага активно используется уже минимум две тысячи лет. Тем не менее...

Инженеры научились ускорять закипание воды

/ Автор: Regulus Tremerus Каждый из нас несколько раз в день включает чайник, чтобы вскипятить воду для любимого...