• Виктор
  • Статьи
  • 2 мин. чтения

На корейском токамаке опробовали новый способ создания плазмы рекордной температуры


Конфигурация плазмы в KSTAR при использовании режима FIRE для повышения энергии плазмы. Шкала температуры плазмы приведена в килоэлектронвольтах, 10 (желтая область) примерно равны 116 миллионам кельвинов / ©https://doi.org/10.1038/s41586-022-05008-1 / Автор: Владимир Богданов

Согласно публикации в рецензируемом журнале Nature, физики из Южной Кореи смогли удерживать плазму с температурой свыше ста миллионов кельвинов более 20 секунд. Значения впечатляющие, но не рекордные. Ранее на этой же установке их уже достигали. И тогда в 2020 году это был непревзойденный результат. Но с тех пор «рукотворное солнце» в Поднебесной (китайский экспериментальный сверхпроводящий токамак, EAST) показало и более высокие температуры и удерживало их дольше.

Свежий отчет все равно заслуживает внимания. Во-первых, даже повторение уже достигнутых параметров плазмы — значимый результат. Такое получается далеко не всегда даже при строгом копировании условий предыдущего эксперимента. Во-вторых, уверенное превышение планки в 100 миллионов кельвинов — важная веха в развитии термоядерной энергетики. Такая температура плазмы считается минимально необходимой для запуска самоподдерживающейся реакции синтеза в токамаках (для других типов реакторов порог отличается). Наконец, в-третьих, условия нового эксперимента сильно отличаются от прежних и это важно.

С точки зрения удобства поддержания термоядерной реакции токамаки — не самый лучший выбор. Есть варианты установок, позволяющие управлять плазмой лучше. Однако тороидальные реакторы проще устроены и лучше изучены, так что их перспективы среди всех типов установок для управляемого термоядерного синтеза (УТС) наиболее радужные. Кроме того, по материалоемкости и объему камеры они почти оптимальны. Тем не менее, в камеру токамака можно поместить конечное количество атомов топлива. Поэтому эффективность реакции после вовлечения в нее всего объема дейтерия и трития получится поднять только наращивая температуру и как можно дольше сохраняя плазму чистой.

Установка KSTAR / ©Korea Institute of Fusion Energy

Загрязняет ее вещество, которое испаряется или выбивается отдельными ионами из стенок вакуумной камеры реактора. Эти примеси даже в крайне незначительных количествах ухудшает качество плазмы — понижает температуру и приводит к повышенной нестабильности ее характеристик. Существует несколько методов противостояния загрязнениям плазмы. Самый распространенный в установках с магнитным удержанием — «барьер пограничного транспорта» (ETB). Фактически, он обусловлен конструкцией токамаков и выражается в том, что во внешней области жгута плазмы перемещение ионов и электронов замедляется. Получается, что до стенок вакуумной камеры кроме нейтронов почти ничего не добирается.

Альтернативный метод не столько замещает ETB, сколько дополняет его — это «барьер внутреннего транспорта» (ITB). Для его реализации требуется более тонкое управление параметрами плазмы, чтобы в центральной части области реакции ее плотность была максимальна. Тогда стенок вакуумной камеры достигает еще меньшее количество вещества. Корейский токамак KSTAR (Korea Superconducting Tokamak Advanced Research) использует именно ITB, причем в модифицированной его реализации. Более того, для последних экспериментов, в ходе которых удалось повторить рекорд, применялся метод FIRE — улучшение ускорения (нагрева) плазмы более точным контролем за быстрыми ионами.

Быстрыми называют те лишенные электронов ядра дейтерия и трития, которые несут большую часть энергии реакции. Хотя от общего объема вещества в реакторе их не более 5%, вклад таких ионов в энерговыделение можно смело называть решающим. Суть метода FIRE в том, что благодаря особо точному контролю за параметрами реакции, быстрые ионы собираются в самом центре жгута плазмы. Таким образом реализуется более полное применение ITB, а также повышается средняя температура вещества в токамаке.

Сейчас KSTAR проходит существенную модернизацию, чтобы ученые могли продолжить эксперименты. Проблема в том, что последний опыт пришлось остановить до того, как реактор показал максимальный результат — установка не позволяет держать горячую плазму дольше полуминуты. Причем часть этого времени тратится для выхода на рабочий режим, поэтому 100 миллионов градусов и продлились всего чуть дольше двух десятков секунд. Как только реактор снова заработает, на нем проведут повторный эксперимент для проверки метода FIRE. Уж слишком легко удалось повторить свой рекорд южнокорейским специалистам и теперь они интересуются — действительно ли они разработали новый способ повышения эффективности реакции, либо это везение.


Source: https://lib.zaplata.ru/nauka/na-koreiskom-tokamake-oprobovali-novyi-sposob-sozdaniia-plazmy-rekordnoi-temperatyry.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Новая теория квантовой гравитации утверждает, что ни один объект не имеет точно определенной массы

Художественная версия рисунка из первой статьи авторов новой гипотезы. На нем, крайне схематично, изображен эксперимент, в котором тяжелые...

Лазер помог направить движение молний

©TRUMPF / Автор: Иван Беляев Уже несколько столетий для защиты от молний используют громоотводы. Такие длинные металлические стержни...

Поиском новых сверхпроводников займется квантовый аналоговый компьютер

Сканирующая электронная микроскопия квантовой аналоговой ячейки. Трехлучевые структуры в центре — «острова», светло-серые области — подложка, темно-серые области...

Объединяй и властвуй — как создать из квантовых компьютеров квантовый интернет

©Pixabay / Автор: Sycophanta Duccius (Окончание. Начало см. тут: 1, 2, 3). Это началось очень, очень давно. В 9 вечера...

Глубокое обучение с подкреплением вводит квантовую систему в «состояние кота Шредингера»

Кот Шредингера, находящийся одновременно в двух квантовых состояниях, в представлении художника. / © Okinawa Institute of Science and...

Уникальный черновик величайшей работы Эйнштейна выставили на аукцион

Листы рукописи, датируемой 1913-1914 годами / ©Cristie’s / Автор: Михаил Григорьев Аукционный дом Christie’s ранее в этом ноябре...

Почему во Вселенной нет антивещества? Ответ может дать космологический коллайдер

Карта температур реликтового излучения, синий и красный цвета отражают разницу температуры в 18 миллионных долей градуса. Для объяснения...

Физики изучили ударные волны при открытии шампанского

©Svante Adermark / Автор: Дмитрий Жуков Игра шампанского начинается с «зарождения» — нуклеации — пузырьков на стеклянной стенке....

Китайские физики добились несомненного квантового превосходства

Juizhang вблизи. / © Chao-Yang Lu/University of Science and Technology of China / Автор: Анастасия Кожевникова Квантовым превосходством...

Физики решили парадокс Леонардо, описавшего странное движение пузырьков

©Elīna Baltiņa, Flickr / Автор: Ирина Мельникова Художник, инженер и скульптор Леонардо да Винчи стал одной из самых...

Закручивание бумаги при печати объяснили с научной точки зрения

Кадр из сериала «Офис» / © nbc.com Бумага активно используется уже минимум две тысячи лет. Тем не менее...

Инженер из США придумал, как создать прототип варп-двигателя в микрометровом масштабе

Схема эксперимента-прототипа варп-двигателя с полостью Казимира в центре / ©Limitless Space Institute / Автор: Михаил Григорьев Научная статья,...

Температура пленки мыльных пузырей оказалась ниже, чем окружающего воздуха

©Boulogne et al., 2022 / Автор: Godefridus Victorinus Заполненные газом пузырьки — не просто детское развлечение. Они возникают...

Ученые наблюдали новое квантовое состояние при комнатной температуре

Структура топологического изолятора из бромида висмута/ © Shafayat Hossain and M. Zahid Hasan of Princeton University / Автор:...

Физикам впервые удалось создать квантовые «кольца Алисы»

Так называемое кольцо Алисы в представлении художника / © Wikimedia Commons / Автор: Сергей Данилов В физике существует...

Проведено прямое измерение массы нейтрино с беспрецедентной точностью

Внутри большого электростатического спектрометра Тритиевого нейтринного эксперимента в Карлсруэ (KATRIN) / ©Michael Zacher/KIT / Автор: Ирина Мельникова Нейтрино...

Жидкий литий избавил ионы в пучке от лишних электронов

Разделитель изотопов и сборка детекторов распада в лаборатории по исследованию пучков редких изотопов FRIB. / © https://www.ornl.gov/project/frib-decay-station /...

Ученые превратили скандий в высокотемпературный сверхпроводник

Скандий — серебристый редкоземельный металл / ©Alchemist-hp, Wikimedia Commons / Автор: Godefridus Victorinus Сверхпроводники обладают нулевым электрическим сопротивлением,...

Физики предложили построить коллайдер на Луне

Симуляция распада бозона Хиггса на мюоны / ©CERN Photolab / Автор: Regulus Tremerus Ученые оценили перспективы строительства гигантского...

Лазерный тандем объединит кильватерные ускорители электронов в коллайдер

Художественная интерпретация лазерного кильватерного ускорения и его схема. Оранжевым показан лазерный импульс, красным – ускоряемые электроны, а высота...