• Виктор
  • Статьи
  • 2 мин. чтения

Физики решили «проблему Фейнмана» об инвертированном разбрызгивателе. Ответ очевидный, а вот объяснение — нет


Разбрызгиватель, работающий в инвертированном режиме (вода движется к центру устройства через трубки-сопла внутрь). Хорошо видны формирующиеся внутри него вихри разного размера и направления / © https://doi.org/10.1103/PhysRevLett.132.044003 / Автор: Александр Литвинов

Для начала стоит упомянуть, что проблема инвертированного разбрызгивателя — наглядная иллюстрация закона Стиглера: Ричард Фейнман лишь популяризовал загадку, но сформулировал ее далеко не первым. Наиболее раннее упоминание этого теоретического вопроса встречается в труде The Science of Mechanics (1883 год) небезызвестного Эрнста Маха, именем которого названо число Маха. Экспериментальные попытки определить, в какую сторону будет вращаться инвертированный разбрызгиватель, стали предпринимать примерно с 1940-х годов.

Имя Фейнмана с этой задачей связано следующим образом. Во-первых, когда он услышал обсуждение проблемы инвертированного разбрызгивателя (как раз в 1940-е) коллегами-аспирантами, предложил провести эксперимент. И не где-нибудь, а в помещении циклотрона Принстонского университета. Опыт закончился феерично: задействованный в процессе стеклянный бак разорвало от избыточного давления. Результат оказался спорным, разбрызгиватель сначала немного дернулся вокруг своей оси, а затем замер и больше не двигался. Хотя вода через него продолжила проходить.

Во-вторых, именно Фейнман познакомил широкую публику с проблемой инвертированного разбрызгивателя. Она упоминается в его автобиографической книге «Вы, конечно, шутите, мистер Фейнман» (1985 год). Хотя в среде популяризаторов науки и ученых эта задача и ранее ассоциировалась с его фамилией, чем гениальный физик явно не был доволен. Он справедливо указывал, что лавры первооткрывателя принадлежат не ему, а Маху.

Упрощенно суть проблемы заключается в следующем. Полностью погрузим садовый S-образный вращающийся разбрызгиватель в большую емкость и попробуем откачать через него воду. В какую сторону будет вращаться разбрызгиватель и будет ли он это делать вообще? Возможных решений три:

  • Он будет вращаться в сторону, противоположную «обычному» режиму разбрызгивания: вода же всасывается, следовательно, на срезе сопел возникает разрежение. Это объяснение наименее полное с точки зрения физики, но интуитивно кажется самым логичным.
  • Он будет вращаться в ту же сторону, что и «обычный» разбрызгиватель: увлекаемая в него вода передает часть крутящего момента на изгибающееся сопло. Этот вариант требует как можно меньшего трения во всех вращающихся деталях разбрызгивателя.
  • Он останется на месте: сила реакции сопла, всасывающего воду, уравновешивается моментом, который вода передает изгибу внутри сопла. С точки зрения большинства изучавших проблему ученых, это наиболее правильный вариант.
Разбрызгиватель, работающий в режиме обычного опрыскивателя (вода движется от центра устройства через трубки-сопла наружу) / © https://doi.org/10.1103/PhysRevLett.132.044003

На протяжении последнего полувека различные исследователи проводили эксперименты, чтобы определить, какой из этих вариантов соответствует действительности. Но результаты были всегда неоднозначные. Даже в тех случаях, когда трение движущихся частей разбрызгивателя удавалось снизить практически полностью, он либо стоял на месте, либо едва заметно вращался в противоположную сторону. Полноценного ответа найти не получалось.

За решение эпохальной задачи взялась лаборатория прикладной математики Курантовского института математических наук (NYU Courant: Institute) — независимого подразделения Нью-Йоркского университета. В ней уже не раз отвечали на животрепещущие вопросы «жизни, Вселенной и вообще»: в 2018 году нашли рецепт идеальных мыльных пузырей, в 2021-м объяснили формирование загадочных каменных лесов, а в 2022-м изучили нюансы аэродинамики планеров с тончайшими крыльями (что позволяет делать самые эффективные бумажные самолетики). Новая научная работа плодотворной исследовательской организации опубликована в рецензируемом журнале Physical Review Letters.

Чтобы во всех деталях изучить происходящее с инвертированным разбрызгивателем, ученым пришлось попотеть. Сначала они создали наиболее полную модель устройства, провели все необходимые вычисления и рассчитали разные варианты развития событий в эксперименте. Для опыта исследователи собрали такую установку, в которой не только минимизировано трение, но и устранены возможные возмущения от потоков жидкости вокруг самого разбрызгивателя.

Во время эксперимента использовали не обычную воду — в нее добавили отражающие микрочастицы, которые ярко светились в лучах подсвечивающего лазера. Так получилось наглядно увидеть поток жидкости и все возникающие в нем турбулентности. Результатом экспериментов и моделирования стала удивительная картина: инвертированный разбрызгиватель действительно будет крутиться в сторону, противоположную «обычному» режиму работы. Только в 50 раз медленнее. Самое удивительное, что обнаружили исследователи: механизм этого вращения полностью идентичен таковому у «правильного», не инвертированного разбрызгивателя. И его секрет кроется в том, что происходит внутри устройства.

Схема эксперимента: (a) — разбрызгиватель в разрезе (он способен работать и в обычном и в инвертированном режиме); (b) — чертеж всей установки; (c) — иллюстрация, показывающая метод визуализации турбулентных потоков (в плоскости трубок-сопел работает «лазерная завеса», которая подсвечивает отражающие микрочастицы, двигающиеся вместе с водой) / © https://doi.org/10.1103/PhysRevLett.132.044003

Дело в том, что при всасывании воды, трубки-сопла тоже формируют струи, только не снаружи разбрызгивателя, а внутри. Даже если они расположены строго на противоположных сторонах кольца и оси их параллельны, получившиеся струи не обязательно столкнутся в центре. Ведь сопла изгибаются, меняют направление движения воды, а она, в свою очередь, получает от этого дополнительный импульс. И когда покидает трубку, часть этого импульса заставляет поток отклоняться от прямолинейной траектории.

В результате внутри разбрызгивателя возникает несколько вихрей, вращающихся в противоположные стороны. Но их размер, а вместе с тем скорость и объем вовлеченной воды, не одинаковый. Это приводит к неравномерному распределению момента силы в разных направлениях. И устройство вращается.

Вывод исследования можно кратко сформулировать так: будет ли фейнмановский разбрызгиватель вращаться и если да, то в какую сторону, — в первую очередь зависит от внутренней геометрии этого разбрызгивателя. В общем случае он будет едва заметно вращаться в обратную сторону, но если трение в его деталях велико, то это движение зафиксировать трудно.


Source: https://oaoo.ru/stepanich/fiziki-reshili-problemy-feinmana-ob-invertirovannom-razbryzgivatele-otvet-ochevidnyi-a-vot-obiasnenie-net.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Ручная стирка снизила количество микропластика в воде

Хотя ручная стирка занимает больше времени, ее вредное влияние на состояние окружающей среды гораздо меньше / © expreso.press...

Нейросеть на оптической основе оказалась в 100 раз энергоэффективнее обычной

Оптоволоконные кабели / © pexels.com / Автор: Александр Литвинов Современные генеративные модели искусственного интеллекта используют сотни миллиардов параметров...

Предложен эксперимент для измерения массы информации

©CERN / Автор: Ольга Кузьмина Еще в прошлом веке Рольф Ландауэр из IBM предположил, что при стирании информации...

Ученые узнали, какой «отпечаток» на костях оставляет удар молнии

Образец кости до, во время и после (слева направо) воздействия на него тока / ©www.sciencealert.com / Автор: Анастасия...

Ученые создали простой материал для светофильтра с регулируемой длиной волны пропускания

Зависимость полосы пропускания видимого света материалом SeedGel от температуры. При 29 градусах гель пропускает только красный свет, а...

Закручивание бумаги при печати объяснили с научной точки зрения

Кадр из сериала «Офис» / © nbc.com Бумага активно используется уже минимум две тысячи лет. Тем не менее...

Таяние ледников укоротит земной год к 2029-му

Ледники стали таять быстрее, и скорость вращения Земли замедлилась сильнее, чем раньше / © pxhere.com Астрономический год, то...

Почему во Вселенной нет антивещества? Ответ может дать космологический коллайдер

Карта температур реликтового излучения, синий и красный цвета отражают разницу температуры в 18 миллионных долей градуса. Для объяснения...

Глаза трилобитов вдохновили ученых на создание камеры с рекордной глубиной резкости

Строение глаза Dalmanitina socialis/ ©NIST / Автор: Никита Тарасов Трилобиты — вымершие морские членистоногие, населявшие океаны 250-543 миллиона...

Объединяй и властвуй — как создать из квантовых компьютеров квантовый интернет

©Pixabay / Автор: Sycophanta Duccius (Окончание. Начало см. тут: 1, 2, 3). Это началось очень, очень давно. В 9 вечера...

Ученые объяснили необычное поведение капель воды на покрытой маслом поверхности

©Kripa Varanasi, Victor Leon, MIT / Автор: Наталья Федосеева Капля воды легко и быстро «скользит» по раскаленной поверхности...

В погоне за миллионом кубитов

C. Lackner / Ars Electronica (CC BY-NC-ND) / Автор: Ptolemocratia Acerronius (Продолжение. Начало см. тут: 1, 2). В...

Физики изучили ударные волны при открытии шампанского

©Svante Adermark / Автор: Дмитрий Жуков Игра шампанского начинается с «зарождения» — нуклеации — пузырьков на стеклянной стенке....

Умер российский физик-теоретик Валерий Рубаков

© Joachim Herz Stiftung / Автор: Godefridus Victorinus В городе Сарове Нижегородской области на 68-м году жизни скончался...

Физики научились плести нити из нанотрубок

©Jeff Fitlow, Rice University / Автор: Visellia Orfius Углеродные нанотрубки представляют собой полые сверхтонкие структуры со стенками толщиной...

От мысленных экспериментов — к квантовому компьютеру

© 2017-2021 IonQ, Inc. / Автор: Михаил Григорьев Если первая квантовая революция начала ХХ века была, по сути,...

Это прорыв — созданы надежные кубиты в ультрахолодных полярных молекулах

Экспериментальная установка / © Gregory et al. / Автор: Владимир Богданов Одно из существенных ограничений при создании квантового...

Землетрясение в Спитаке

Фото: Adam Jones from Kelowna, BC, wikimedia.org / Автор: Михаил Григорьев На исходе утра 7 декабря 1988 года...

Свет заставил воду испаряться без нагрева

Клубы светлого конденсата на стекле — это испарение воды из гидрогеля под действием зеленого света без нагрева /...

Ученые раскрыли секрет свинга в джазе

Ученые раскрыли секрет свинга в джазе / ©Getty images / Автор: Lampronia Auxilius Свингом называют особый джазовый ритмический...