• Виктор
  • Статьи
  • 2 мин. чтения

Китай построит крупнейший в мире подводный телескоп для охоты за «призрачными частицами»


Японский нейтринный детектор Super-Kamiokande / © The University of Tokyo / Автор: Ольга Кузьмина

Космические лучи — потоки заряженных частиц, часть из которых — с очень высокими скоростями и энергиями. Они приходят из космического пространства и постоянно бомбардируют атмосферу Земли со всех сторон. Спустя более чем 100 лет после их открытия австрийским физиком Виктором Гессом (за это он получил Нобелевскую премию в 1936 году) ученые до сих пор не могут окончательно объяснить их природу. Неизвестно, как и где наиболее высокоэнергетические из этих частиц получают столь огромные энергии.

Но физики уверены, что космические лучи несут высокоэнергетические нейтрино (в переводе с итальянского — «нейтрончик») — мельчайшие элементарные частицы, которые не меняют направления своего движения, не распадаются и не поглощаются межзвездной средой. Они могут проходить сквозь земную атмосферу и Землю, не реагируют на магнитное поле.

Космические лучи в основном состоят из протонов. Когда протоны сталкиваются с ядрами атомов, например во время взаимодействия лучей с активными ядрами галактик, окрестностями черных дыр, пульсарами, рождаются мезоны. В результате распада мезонов возникают космические нейтрино высоких энергий. Кроме того, еще один тип нейтрино может появляться во время попадания космических лучей в атмосферу нашей планеты. Столкновения протонов с атомами воздуха рождает заряженные пионы, которые распадаются среди прочего на высокоэнергетичные мюонные нейтрино.

У нейтрино нет заряда, но есть небольшая масса, которая не превышает 0,8 электронвольта. Для сравнения, масса электрона — 511 тысяч электронвольт. Для «нейтрончика» как будто не существует преград: они легко проникают сквозь предметы, людей и планету. Помимо этого, нейтрино практически не взаимодействуют с веществом, а значит, такие частицы довольно сложно «поймать». Вот почему их называют «призрачными». 

Несколько десятилетий назад ученые обнаружили, что когда нейтрино проходят сквозь Землю, они могут слабо взаимодействовать с молекулами воды и на больших глубинах создавать «побочные продукты» — потоки мюонов, которые испускают черенковское излучение в виде голубого свечения под строго определенным углом. Изучая эти «вспышки», физики могут определить направление движения мюона и его энергию, а значит, и источник нейтрино.

Именно для этих целей исследователи строят телескопы либо под водой, либо под землей, но с огромными резервуарами воды. Большой объем воды позволяет увеличить пространство, через которое может пройти нейтрино. Она должна быть чистой, чтобы исключить примеси, которые способны повлиять на процесс пролета нейтрино и его регистрацию. Обычно такие системы представляют собой детекторы — пространственные решетки фотоумножителей, позволяющие регистрировать черенковский свет. 

Отметим, что нейтрино могут рождаться не только вблизи массивных черных дыр, во время взрывов сверхновых, в активных ядрах галактик, но и в недрах Солнца, Земли, в атмосфере, даже в ядерных реакторах. Ученых зачастую интересуют именно космические нейтрино, то есть нейтрино сверхвысоких энергий, потому что они несут информацию о далеких астрономических объектах.

Чтобы выделить из этих потоков мельчайших элементарных частиц космические нейтрино, необходимы огромные детекторы, в которых в качестве «рабочего материала» выступают большие объемы воды или льда. Самый крупный на сегодня нейтринный телескоп — IceCube, представляющий собой массив оптических детекторов, встроенных в толщу антарктического льда. Его запустили в 2010 году, рабочий объем составляет один кубический километр. За время работы IceCube обнаружил нейтрино сверхвысоких энергий (вероятно, они возникли за пределами Солнечной системы), а также позволил создать первую нейтринную карту Млечного Пути.

Нейтринная обсерватория IceCube, построенная на антарктической станции Амундсен-Скотт / © Wikimedia

Еще одна крупная установка находится в России, в озере Байкал, — Baikal-GVD. Она начала работать в 2021 году и, в отличие от IceCube, расположена на глубине, но рабочий объем немного меньше. 

На днях стало известно, что свой глубоководный нейтринный телескоп нового поколения собирается построить Китай. Об этом рассказали китайские ученые из Шанхайского университета Цзяо Тун. Работа с описанием телескопа опубликована в журнале Nature Astronomy.

Для установки, которую назвали Trident, уже выбрали место — Южно-Китайское море, не так уж далеко от экватора (в 540 километрах к югу от Гонконга). Телескоп разместят на плоском морском дне на глубине 3,5 километра.

«Поскольку наша система будет находиться недалеко от экватора, при вращении Земли она сможет улавливать нейтрино со всех сторон. Это позволит нам вести наблюдения без каких-либо слепых зон», — пояснил руководитель проекта Цзин Ипэн.

Работы над проектом Trident уже начались. Ожидается, что первый этап строительства завершится к 2026 году / © Shanghai Jiao Tong University

Китайская установка будет состоять более чем из 24 тысяч оптических датчиков (у IceCube их около пяти тысяч), расположенных в 1211 вертикальных «струнах», каждая длиной 700 метров. Эти датчики будут регистрировать черенковский свет, испускаемый мюонами, возникающими при столкновении нейтрино и атомов водорода или кислорода в молекулах воды.

Trident разместят в виде мозаики Пенроуза. Рабочий объем телескопа составит примерно 7,5 кубического километра, он будет сканировать морскую воду в поисках следов взаимодействий нейтрино сверхвысоких энергий. Trident будет в 10 тысяч раз чувствительнее системы IceCube. Срок службы установки рассчитан на 20 лет, а построят ее к 2030 году. К слову, работы по строительству глубоководного нейтринного телескопа уже начались. 

По мнению авторов проекта, Trident поможет решить вековую загадку происхождения космических лучей, проверить пространственно-временные симметрии, найти квантовую гравитацию и косвенно обнаружить темную материю.


Source: https://lib.zaplata.ru/nauka/kitai-postroit-krypneishii-v-mire-podvodnyi-teleskop-dlia-ohoty-za-prizrachnymi-chasticami.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Физики решили парадокс Леонардо, описавшего странное движение пузырьков

©Elīna Baltiņa, Flickr / Автор: Ирина Мельникова Художник, инженер и скульптор Леонардо да Винчи стал одной из самых...

Мозг не ищет кратчайший путь при планировании маршрута

Кроме того, оптимальный путь в одном направлении может не совпадать с оптимальным путем обратно (синий путь не совпадает...

Меньше точности, больше удобства: хронометристы отказались от «лишних» секунд

Точность международного времени требует постоянной корректировки часов / © wikipedia.org / Автор: Иван Беляев Подобно тому, как к...

Физики научили квантовый компьютер исправлять свои ошибки

Микрочип с ионной ловушкой. / © Kai Hudek/JQI / Автор: Александр Литвинов На квантовые компьютеры возлагают большие надежды...

Китайские физики получили рекордно мощное постоянное магнитное поле

Гибридный магнит в Хэфэе / ©SHMFF / Автор: Euclio Drusus Установка постоянного высокого магнитного поля (Steady High Magnetic...

Физики показали, как пингвины-эгоисты достигают коллективного оптимума

Пингвины как активные частицы в скалярном поле. / © HHU / Alexandra V. Zampetaki / Автор: Артем Фомин...

Ученые узнали, почему так приятно разжевывать шоколад

Ученые узнали, почему так приятно разжевывать шоколад / ©Getty images / Автор: Иван Беляев Шоколад любит большинство россиян....

Крошечные подводные дюны могут рассказать о формировании рельефа Марса

© Flickr / Автор: Дмитрий Жуков Ученые из Университета Кампинас (Бразилия) и Калифорнийского университета в Лос-Анджелесе (США) подробно...

Проведено прямое измерение массы нейтрино с беспрецедентной точностью

Внутри большого электростатического спектрометра Тритиевого нейтринного эксперимента в Карлсруэ (KATRIN) / ©Michael Zacher/KIT / Автор: Ирина Мельникова Нейтрино...

Алмазные наномембраны выручили электронику и зарядку литиевых батарей

СЭМ-изображение алмазной наномембраны, изгибающейся под внешним воздействием механической силы / © Fraunhofer Вся цифровая электроника выделяет тепло благодаря...

Китайский термоядерный реактор установил новый рекорд непрерывной работы плазмы при высокой температуре

EAST / ©XinHua / Автор: Euclio Drusus Китайские ученые установили новый рекорд работы термоядерного реактора EAST. Во время...

Лазерный тандем объединит кильватерные ускорители электронов в коллайдер

Художественная интерпретация лазерного кильватерного ускорения и его схема. Оранжевым показан лазерный импульс, красным – ускоряемые электроны, а высота...

На корейском токамаке опробовали новый способ создания плазмы рекордной температуры

Конфигурация плазмы в KSTAR при использовании режима FIRE для повышения энергии плазмы. Шкала температуры плазмы приведена в килоэлектронвольтах,...

Физики узнали, как правильно мыть руки

Кадр из фильма «Авиатор» (2004) / © Gifer / Автор: Павел Сорокин То, что соблюдение правил гигиены, особенно...

Физики предложили два новых способа превращать инфракрасный свет в видимый

© Wikimedia / Автор: Ирина Мельникова Инфракрасным светом называют электромагнитное излучение с длиной волны большей, чем у красного...

Скрипку Паганини облучили синхротроном в попытке раскрыть секрет ее звучания

Скрипка Паганини «Il Cannone» © JEAN-PHILIPPE KSIAZEK / AFP Легендарный инструмент, стоимость которого оценивают в миллионы, в 1743...

Спад антропогенных выбросов СО2 во время пандемии никак не помешал росту его концентрации в атмосфере

Океан поглощает не менее четверти от антропогенных выбросов углекислого газа. Однако по мере потепления он будет делать это...

ЦЕРН прекратит сотрудничество с Россией и Белоруссией

ALICE — один из семи экспериментальных детекторов, сооруженных на Большом адронном коллайдере в ЦЕРН / © Maximilien Brice,...

Физики научились предсказывать срок хранения шампанского

©Martin Dubé, Flickr / Автор: Ptolemocratia Acerronius Шампанское и другие игристые вина насыщены углекислым газом. После вскрытия он...

Стали известны имена лауреатов Нобелевской премии по физике — 2021

Объявление лауреатов Нобелевской премии по физике за 2021 год / © AFP 2021, Jonathan Nackstrand / Автор: Telestis...