• Виктор
  • Статьи
  • 2 мин. чтения

Лазерный тандем объединит кильватерные ускорители электронов в коллайдер


Художественная интерпретация лазерного кильватерного ускорения и его схема. Оранжевым показан лазерный импульс, красным – ускоряемые электроны, а высота (глубина) волны соответствует плотности отрицательного (положительного) заряда. На правой части зеленым показаны траектории электронов относительно сгустка лазерного импульса, и их скопление в задней части пузырька. / © https://loa.ensta-paris.fr/research/upx-research-group/laser-wakefield-acceleration-lwfa/ / Автор: Visellia Orfius

Традиционные ускорители элементарных частиц не могут воздействовать на них электрическим полем, превосходящим несколько десятков мегавольт на метр. Этот предел является одной из причин гигантских размеров современных ускорителей: при его превышении неизбежно происходит электрический пробой конструкций.

Создание ускоряющих полей в плазме, состоящей из свободных электронов и ионов, способно избежать ограничений, связанных с электрической прочностью. Без поддержки электрические поля в ней быстро затухают, но их «мгновенная» интенсивность не ограничена практически ничем — в плазме «все, что можно, уже пробито». Рецепт применения гигантских электрических полей в плазме — использование разделения электрических зарядов до того, как они успеют сместиться и компенсировать возникшее между ними электрическое поле.

Лазерное ускорение элементарных частиц основано на разделении зарядов в плазме под действием сверхмощных фемтосекундных лазерных импульсов. Фемтосекунда – одна миллиардная миллионной доли секунды, и длина типичного импульса продолжительностью десятки фемтосекунд составляет несколько микрометров.

Симуляция пузырька положительного заряда в плазме под действием луча-драйвера, в отсутствие ускоряемых электронов (слева) и при их вводе (справа). Синим показана плотность электронов в плазме, а оранжевым – интенсивность луча (справа на каждой картинке), и плотность ускоряемых электронов (слева на правой картинке). Графики показывают продольную компоненту электрического поля на оси луча в гигавольтах на метр. / © https://physicstoday.scitation.org/doi/10.1063/PT.3.2639

Электроны гораздо легче протонов и атомных ядер, и быстрее реагируют на электромагнитные поля. Попадая в плазму, лазерный импульс буквально «разбрасывает» электроны со своего пути. Образуется положительно заряженный «пузырь» с избытком ионов, который притягивает разлетевшиеся электроны обратно. За пузырем они сходятся, создавая область очень плотного отрицательного заряда.

Этот пузырь, как и волны заряда за ним, движется по плазме вслед за лазерным импульсом со скоростью, близкой к световой. Электрическое поле между пузырем и его «кильватером» может достигать сотни гигавольт на метр, и электроны, оказавшиеся в пузыре, «катятся» по электрическому полю, отталкиваясь от отрицательного заряда, как сёрферы от океанской волны.

Существует множество схем плазменного ускорения, использующих лазерные импульсы, пучки заряженных частиц и их комбинации. Кильватерные ускорители уже способны разгонять электроны до нескольких гигаэлектронвольт в настольных установках, которые в сотни раз меньше и намного дешевле традиционных линейных ускорителей.

Но плазменное ускорение обладает «встроенными» недостатками. Процесс по своей природе «сверхбыстротечен», а область ускорения обычно не превосходит сантиметров в длину — дальше лазерный импульс в плазме рассеивается. Ускоренные электроны имеют сильный разброс по энергиям и направлениям полета, а для исследований физики элементарных частиц требуется гораздо более точный контроль их параметров.

Слева: деформируемые зеркала, управляющие фокусировкой лазерных импульсов. Справа: вторая линия подачи лазерного луча, построенная в лаборатории BELLA. / © Marilyn Sargent/Berkeley Lab

Совершенствованием лазерного ускорения занялись сотрудники центра BELLA (Berkeley Lab Laser Accelerator Center) Национальной лаборатории Лоуренса Беркли (Lawrence Berkeley National Laboratory) во главе с Эриком Эсари (Eric Esarey). Основной установкой их лаборатории является импульсный лазер петаваттной пиковой мощности (один петаватт равен миллиарду мегаватт). В новом пресс-релизе исследователи рассказали о модернизации установок по управлению лучом и завершении строительства второй линии подачи луча, которая использует часть импульса от основного лазера.

Вторая линия станет независимым источником импульсов, параметрами которых можно управлять в широких пределах. Использование импульса одного и того же лазера нужно, чтобы точнее синхронизировать работу импульсов. Запустить два отдельных лазера, соблюдая интервал с фемтосекундной точностью, очень трудно, зато задержкой между двумя частями одного и того же импульса можно управлять гораздо точнее, что и обеспечивает вторая линия.

Таким образом, вместо одного лазерного ускорителя лаборатория теперь располагает двумя, которые можно настраивать комбинировать друг с другом практически любым образом. Модернизация позволяет независимо управлять продолжительностью и длительностью каждого импульса, и интервалом между ними. Кроме того, в обе линии были добавлены зеркала с деформируемой поверхностью, позволяющие точно настраивать фокусировку лазерных импульсов.

Ученые надеются, что модернизация позволит им собрать плазменные ускорители в тандем, а так же построить из них коллайдер. В первом случае задача — подхватить сгусток электронов, вылетающий из одного плазменного канала, и ускорить его во втором канале. При этом параметры импульсов требуется подобрать так, чтобы не допустить рассеяния электронов. Во втором случае электроны будут лететь навстречу друг другу, а контроль траектории «пузырьков» с точностью до фемтосекунд и микрометров не даст их сгусткам промахнуться мимо друг друга в пространстве и времени.

Если эти задачи удастся решить для лазерных ускорителей — со временем они смогут стать компактной альтернативой некоторым разновидностям гигантских коллайдеров.


Source: https://oaoo.ru/nauka/lazernyi-tandem-obedinit-kilvaternye-yskoriteli-elektronov-v-kollaider.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Время «жизни» бозона Хиггса наконец-то измерили почти точно

Визуализация обнаружения искомых субатомных частиц на детекторе CMS (Компактный мюонный соленоид) Большого адронного коллайдера. На модели показан результат...

Закручивание бумаги при печати объяснили с научной точки зрения

Кадр из сериала «Офис» / © nbc.com Бумага активно используется уже минимум две тысячи лет. Тем не менее...

Первые наблюдения сверхтяжелого кислорода-28 поставили под сомнение теории строения атомного ядра

Riken RI Beam Factory ускоряет тяжелые изотопы в кольцевом циклотроне, с помощью сверхпроводящих магнитов / © Riken, Nishina...

Физики выяснили, почему поверхность айсбергов не гладкая

Форма тающего льда при разной температуре / © NYU’s Applied Mathematics Laboratory / Автор: Ольга Кузьмина В своем...

Китайские инженеры научились добывать водородное топливо из морской воды

©Nanjing Tech University / Автор: Caristania Fabricius Водород считается одним из самых перспективных видов топлива будущего. Его сжигание...

Нейросеть на оптической основе оказалась в 100 раз энергоэффективнее обычной

Оптоволоконные кабели / © pexels.com / Автор: Александр Литвинов Современные генеративные модели искусственного интеллекта используют сотни миллиардов параметров...

Физики вывели формулу для формы яблока и подтвердили ее экспериментально

Как физики видят яблоко / © Harvard SEAS / Автор: Milonia Larcius Форма яблока — одна из самых...

Цвет «дымки» от шампанского объяснили криогенными процессами

Кадр из сериала «Офис» / © NBC / Автор: Caristania Fabricius Шампанское — главный напиток Нового года. Когда...

«Атомный дырокол» превратил обычные материалы в компоненты квантовых компьютеров

«Атомный дырокол», созданный физиками / © Steve Zylius, UCI / Автор: Lampronia Auxilius Основу большинства современной вычислительной техники...

Для будущего токамака собрали магнит рекордной мощности

Магнит из высокотемпературного сверхпроводника: вид сверху / ©Gretchen Ertl, CFS, MIT-PSFC, 2021 / Автор: Telestis Scaevinius Управляемый термоядерный...

Ученые обнаружили новую форму льда, которая может существовать в недрах Земли и на других планетах

© Flickr / Автор: Екатерина Лебедева Лед, как и другие твердые вещества, способен принимать разные формы, которые зависят...

Математики определили оптимальную форму тяжелых камней для «выпекания блинчиков» на воде

©Paul Rowlett, Flickr / Автор: Татьяна Соловьёва Бросание камня в воду так, чтобы тот несколько раз отскочил от...

Исследователи нашли потенциальный способ передачи звука в космосе

Эффект «вакуумного туннелирования фононов» в представлении художника / ©University of Jyväskylä / Автор: Messiena Lucretius Звук — упругие...

Новая теория квантовой гравитации утверждает, что ни один объект не имеет точно определенной массы

Художественная версия рисунка из первой статьи авторов новой гипотезы. На нем, крайне схематично, изображен эксперимент, в котором тяжелые...

Экспериментаторы впервые смогли зарегистрировать хопфионы в естественном материале

Направления движения спинов в кольце хопфиона в представлении художника / © Philipp Rybakov, Uppsala University / Автор: Euclio...

Ученые наблюдали новое квантовое состояние при комнатной температуре

Структура топологического изолятора из бромида висмута/ © Shafayat Hossain and M. Zahid Hasan of Princeton University / Автор:...

Математики создали уравнение для точного описания движения жидкостей и газов в сложных средах

Схема движения частицы в молекулярной решетке и новая формула диффузионного движения / © Бристольский университет / Автор: Telestis...

Кухонные доски оказались источником микропластика в человеческой пище

Пластиковые доски становятся источником частиц микропластика в наших продуктах / ©Pixabay / Автор: Messiena Lucretius Ни для кого...

Получена новая кристаллическая форма кремния

Структура 4Н-кремния на фоне микрофотографии реального кристалла, полученной электронным микроскопом / ©Thomas Shiell, Timothy Strobel, Carnegie Institution for...

Новые эксперименты подтвердили, что электроны «круглые»

©JILA, Steven Burrows / Автор: Михаил Григорьев Электрон — заряженная частица, несущая элементарный, минимально возможный заряд. Однако заряд...