• Виктор
  • Статьи
  • 2 мин. чтения

Лазерный тандем объединит кильватерные ускорители электронов в коллайдер


Художественная интерпретация лазерного кильватерного ускорения и его схема. Оранжевым показан лазерный импульс, красным – ускоряемые электроны, а высота (глубина) волны соответствует плотности отрицательного (положительного) заряда. На правой части зеленым показаны траектории электронов относительно сгустка лазерного импульса, и их скопление в задней части пузырька. / © https://loa.ensta-paris.fr/research/upx-research-group/laser-wakefield-acceleration-lwfa/ / Автор: Visellia Orfius

Традиционные ускорители элементарных частиц не могут воздействовать на них электрическим полем, превосходящим несколько десятков мегавольт на метр. Этот предел является одной из причин гигантских размеров современных ускорителей: при его превышении неизбежно происходит электрический пробой конструкций.

Создание ускоряющих полей в плазме, состоящей из свободных электронов и ионов, способно избежать ограничений, связанных с электрической прочностью. Без поддержки электрические поля в ней быстро затухают, но их «мгновенная» интенсивность не ограничена практически ничем — в плазме «все, что можно, уже пробито». Рецепт применения гигантских электрических полей в плазме — использование разделения электрических зарядов до того, как они успеют сместиться и компенсировать возникшее между ними электрическое поле.

Лазерное ускорение элементарных частиц основано на разделении зарядов в плазме под действием сверхмощных фемтосекундных лазерных импульсов. Фемтосекунда – одна миллиардная миллионной доли секунды, и длина типичного импульса продолжительностью десятки фемтосекунд составляет несколько микрометров.

Симуляция пузырька положительного заряда в плазме под действием луча-драйвера, в отсутствие ускоряемых электронов (слева) и при их вводе (справа). Синим показана плотность электронов в плазме, а оранжевым – интенсивность луча (справа на каждой картинке), и плотность ускоряемых электронов (слева на правой картинке). Графики показывают продольную компоненту электрического поля на оси луча в гигавольтах на метр. / © https://physicstoday.scitation.org/doi/10.1063/PT.3.2639

Электроны гораздо легче протонов и атомных ядер, и быстрее реагируют на электромагнитные поля. Попадая в плазму, лазерный импульс буквально «разбрасывает» электроны со своего пути. Образуется положительно заряженный «пузырь» с избытком ионов, который притягивает разлетевшиеся электроны обратно. За пузырем они сходятся, создавая область очень плотного отрицательного заряда.

Этот пузырь, как и волны заряда за ним, движется по плазме вслед за лазерным импульсом со скоростью, близкой к световой. Электрическое поле между пузырем и его «кильватером» может достигать сотни гигавольт на метр, и электроны, оказавшиеся в пузыре, «катятся» по электрическому полю, отталкиваясь от отрицательного заряда, как сёрферы от океанской волны.

Существует множество схем плазменного ускорения, использующих лазерные импульсы, пучки заряженных частиц и их комбинации. Кильватерные ускорители уже способны разгонять электроны до нескольких гигаэлектронвольт в настольных установках, которые в сотни раз меньше и намного дешевле традиционных линейных ускорителей.

Но плазменное ускорение обладает «встроенными» недостатками. Процесс по своей природе «сверхбыстротечен», а область ускорения обычно не превосходит сантиметров в длину — дальше лазерный импульс в плазме рассеивается. Ускоренные электроны имеют сильный разброс по энергиям и направлениям полета, а для исследований физики элементарных частиц требуется гораздо более точный контроль их параметров.

Слева: деформируемые зеркала, управляющие фокусировкой лазерных импульсов. Справа: вторая линия подачи лазерного луча, построенная в лаборатории BELLA. / © Marilyn Sargent/Berkeley Lab

Совершенствованием лазерного ускорения занялись сотрудники центра BELLA (Berkeley Lab Laser Accelerator Center) Национальной лаборатории Лоуренса Беркли (Lawrence Berkeley National Laboratory) во главе с Эриком Эсари (Eric Esarey). Основной установкой их лаборатории является импульсный лазер петаваттной пиковой мощности (один петаватт равен миллиарду мегаватт). В новом пресс-релизе исследователи рассказали о модернизации установок по управлению лучом и завершении строительства второй линии подачи луча, которая использует часть импульса от основного лазера.

Вторая линия станет независимым источником импульсов, параметрами которых можно управлять в широких пределах. Использование импульса одного и того же лазера нужно, чтобы точнее синхронизировать работу импульсов. Запустить два отдельных лазера, соблюдая интервал с фемтосекундной точностью, очень трудно, зато задержкой между двумя частями одного и того же импульса можно управлять гораздо точнее, что и обеспечивает вторая линия.

Таким образом, вместо одного лазерного ускорителя лаборатория теперь располагает двумя, которые можно настраивать комбинировать друг с другом практически любым образом. Модернизация позволяет независимо управлять продолжительностью и длительностью каждого импульса, и интервалом между ними. Кроме того, в обе линии были добавлены зеркала с деформируемой поверхностью, позволяющие точно настраивать фокусировку лазерных импульсов.

Ученые надеются, что модернизация позволит им собрать плазменные ускорители в тандем, а так же построить из них коллайдер. В первом случае задача — подхватить сгусток электронов, вылетающий из одного плазменного канала, и ускорить его во втором канале. При этом параметры импульсов требуется подобрать так, чтобы не допустить рассеяния электронов. Во втором случае электроны будут лететь навстречу друг другу, а контроль траектории «пузырьков» с точностью до фемтосекунд и микрометров не даст их сгусткам промахнуться мимо друг друга в пространстве и времени.

Если эти задачи удастся решить для лазерных ускорителей — со временем они смогут стать компактной альтернативой некоторым разновидностям гигантских коллайдеров.


Source: https://oaoo.ru/nauka/lazernyi-tandem-obedinit-kilvaternye-yskoriteli-elektronov-v-kollaider.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Ученые узнали, почему сосульки покрыты «рябью»

Сосульки / ©Getty images / Автор: Regulus Tremerus Не все знают, но сосульки бывают довольно разнообразной формы, в...

Эксперименты показали связь полярных сияний с волнами плазмы

©Austin Montelius, University of Iowa / Автор: Александр Литвинов Когда поток заряженных частиц устремляется из космоса к Земле,...

ЦЕРН прекратит сотрудничество с Россией и Белоруссией

ALICE — один из семи экспериментальных детекторов, сооруженных на Большом адронном коллайдере в ЦЕРН / © Maximilien Brice,...

Удачный эксперимент на новосибирском электрон-позитронном коллайдере отодвинул границу «новой физики»

Комплекс ВЭПП-4 – ВЭПП / ©ИЯФ СО РАН / Автор: Messiena Lucretius Специалисты из Института ядерной физики имени...

Математики создали уравнение для точного описания движения жидкостей и газов в сложных средах

Схема движения частицы в молекулярной решетке и новая формула диффузионного движения / © Бристольский университет / Автор: Telestis...

Работу Большого адронного коллайдера остановили раньше срока из-за энергетического кризиса

БАК — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжелых ионов (ионов свинца) /...

Физики научились предсказывать срок хранения шампанского

©Martin Dubé, Flickr / Автор: Ptolemocratia Acerronius Шампанское и другие игристые вина насыщены углекислым газом. После вскрытия он...

Для будущего токамака собрали магнит рекордной мощности

Магнит из высокотемпературного сверхпроводника: вид сверху / ©Gretchen Ertl, CFS, MIT-PSFC, 2021 / Автор: Telestis Scaevinius Управляемый термоядерный...

Ученые втрое понизили давление высокотемпературного сверхпроводящего перехода легких гидридов

Камера с алмазной наковальней, в которой физики исследовали образец кристалла / Snider, Dias et al., Nature, 2020 /...

Физики открыли новый вид магнетизма

© pinterest / Автор: Godefridus Victorinus Магнетизм — свойство, которым обладают одни материалы и не обладают другие. Это...

Скорость вращения Земли, причины ее изменения и что нам об этом известно

Анимация из кадров, сделанных аппаратом «Электро-Л №2» (GOMS-3) / ©«Роскосмос», Научный Центр оперативного мониторинга Земли (НЦ ОМЗ) /...

Исследователи нашли потенциальный способ передачи звука в космосе

Эффект «вакуумного туннелирования фононов» в представлении художника / ©University of Jyväskylä / Автор: Messiena Lucretius Звук — упругие...

Нейросеть на оптической основе оказалась в 100 раз энергоэффективнее обычной

Оптоволоконные кабели / © pexels.com / Автор: Александр Литвинов Современные генеративные модели искусственного интеллекта используют сотни миллиардов параметров...

Физики предложили построить коллайдер на Луне

Симуляция распада бозона Хиггса на мюоны / ©CERN Photolab / Автор: Regulus Tremerus Ученые оценили перспективы строительства гигантского...

Китайские физики добились несомненного квантового превосходства

Juizhang вблизи. / © Chao-Yang Lu/University of Science and Technology of China / Автор: Анастасия Кожевникова Квантовым превосходством...

Китайский термоядерный реактор установил новый рекорд непрерывной работы плазмы при высокой температуре

EAST / ©XinHua / Автор: Euclio Drusus Китайские ученые установили новый рекорд работы термоядерного реактора EAST. Во время...

Почему во Вселенной нет антивещества? Ответ может дать космологический коллайдер

Карта температур реликтового излучения, синий и красный цвета отражают разницу температуры в 18 миллионных долей градуса. Для объяснения...

Физики предложили два новых способа превращать инфракрасный свет в видимый

© Wikimedia / Автор: Ирина Мельникова Инфракрасным светом называют электромагнитное излучение с длиной волны большей, чем у красного...

Парадокс чайного листа Эйнштейна привел к самопроизвольному формированию ценного материала

© Flickr / Автор: Ptolemocratia Acerronius В 1926 году Альберт Эйнштейн представил доклад для Прусской академии наук, который...

На корейском токамаке опробовали новый способ создания плазмы рекордной температуры

Конфигурация плазмы в KSTAR при использовании режима FIRE для повышения энергии плазмы. Шкала температуры плазмы приведена в килоэлектронвольтах,...