• Виктор
  • Статьи
  • 2 мин. чтения

Исследователи нашли потенциальный способ передачи звука в космосе


Эффект «вакуумного туннелирования фононов» в представлении художника / ©University of Jyväskylä / Автор: Messiena Lucretius

Звук — упругие волны, которые распространяются в среде, где есть молекулы, атомы или ионы, через вещество в твердой, жидкой, газообразной и плазменной фазах. Передача звука происходит посредством звуковых волн, то есть звуковых (механических) колебаний в среде, которая эти самые колебания поддерживает.

В космической пустоте звуковые волны распространяться не могут, поскольку там практически нет молекул, атомов и ионов.

В 2010 году физики из нескольких университетов США оспорили утверждение, что звук невозможно передать в пустоте. В своем исследовании они предположили, что звуковые колебания могут «перескакивать» из одного твердого тела в другое через вакуумный зазор субмикронной толщины. Этот эффект получил название «вакуумное туннелирование фононов».

Фонон — квазичастица, квант энер­гии ко­ле­ба­тель­ного дви­же­ния атомов те­ла, которые об­ра­зую­т иде­аль­ную кри­стал­лическую ре­шет­ку. По словам американских физиков, описанный ими эффект работает за счет взаимодействия между электрическим полем и звуковыми волнами в кристалле.

Когда колебания кристаллической решетки «доходят» до одной из граней кристалла, вблизи его поверхности создаются переменные электрические поля, которые затем «чувствуются» на другом краю вакуумного зазора. После чего эти поля раскачивают колебания кристаллической решетки в другом кристалле.

Это можно представить так: один фонон «перепрыгивает» через вакуум из первого кристалла во второй и распространяется в нем дальше, хотя в пространстве между телами фонона нет.

В своей научной работе американские ученые описали несколько механизмов, с помощью которых можно добиться эффективной связи между колебанием кристалла и электрическим полем. Однако на практике эти механизмы до недавнего времени никто не проверял.

Группа физиков из Центра нанотехнологий при Университете Йювяскюля (Финляндия) провела эксперимент и выяснила, как и при каких условиях звуковые волны могут «перепрыгивать» через пустоту, разделяющую два твердых тела. Результаты исследования представлены в журнале Communications Physics.

В эксперименте ученые использовали два одинаковых пьезоэлектрических кристалла на основе оксида цинка. Пьезоэлектрики — вещества, которые электризуются при деформации и деформируются в электрическом поле.

Схема системы, состоящей из двух пьезоэлектрических тел, разделенных вакуумным зазором. Звуковая волна из твердого тела 1 с углом падения θi «перепрыгивает» через вакуумный зазор в твердое тело 2 / ©Geng and Maasilta, Commun. Phys., 2023

Звуковые волны вызывают механическое напряжение. Пьезоэлектрические кристаллы могут преобразовывать это напряжение в электрическое поле, и наоборот. Эти кристаллы растягиваются или сжимаются под действием звуковых волн, в результате преобразованное электрическое поле может изменяться.

Когда звуковая волна достигает края первого кристалла, электрическое поле, связанное с ним и проходящее «сквозь» пустоту, изменится и деформирует другой кристалл — значит, звуковая волна «перескочила» через вакуум от одного тела к другому.

После того как ученые разместили кристаллы в специальной установке друг напротив друга, отделив их вакуумным зазором, один из кристаллов преобразовал электрическую энергию обратно в механическую, и звуковая волна от первого кристалла «перескочила» через зазор к другому. Добиться этого получилось только при определенных условиях: кристаллы разделяло расстояние, не превышающее длину исходной звуковой волны.

Финские физики объяснили, что этот эффект работает с разными диапазонами звуковых частот: как с «герцевым» и «килогерцевым», так и с диапазонами, лежащими ниже диапазона слышимости человека, — с ультразвуком (МГц) и гиперзвуком (ГГц). По мере увеличения частоты вакуумный зазор в эксперименте уменьшался.

«Зачастую звуковая волна перепрыгивала через зазор слабо, однако были случаи, когда она проходила полностью со стопроцентной эффективностью, причем без каких-либо отражений», — объяснил Илари Маасилта, соавтор исследования.

Конечно, этот эксперимент нельзя считать прямым доказательством того, что звуковые волны способны распространяться в вакууме, но зато результаты исследования могут пригодиться в других областях науки. В частности, в разработке микроэлектромеханических компонентов, которые используются в барометрах, датчиках угловых скоростей, гироскопах, акселерометрах.

Интересно, что эксперименты по передаче инфразвука авторы работы не проводили. Если для них работают те же принципы, то достаточно большие пьезокристаллы могут передавать в космической пустоте звуковые волны и на весьма существенные расстояния, ведь длина инфразвуковой волны достигает десятков метров.


Source: https://lib.zaplata.ru/nauka/issledovateli-nashli-potencialnyi-sposob-peredachi-zvyka-v-kosmose.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Ученые превратили скандий в высокотемпературный сверхпроводник

Скандий — серебристый редкоземельный металл / ©Alchemist-hp, Wikimedia Commons / Автор: Godefridus Victorinus Сверхпроводники обладают нулевым электрическим сопротивлением,...

В погоне за миллионом кубитов

C. Lackner / Ars Electronica (CC BY-NC-ND) / Автор: Ptolemocratia Acerronius (Продолжение. Начало см. тут: 1, 2). В...

У ученых до сих пор нет единой теории происхождения шаровых молний

Шаровая молния на гравюре XIX века / Автор: Pinaria Caprarius Заместитель директора Московского института электроники и математики имени...

Экспериментаторы впервые смогли зарегистрировать хопфионы в естественном материале

Направления движения спинов в кольце хопфиона в представлении художника / © Philipp Rybakov, Uppsala University / Автор: Euclio...

Поиском новых сверхпроводников займется квантовый аналоговый компьютер

Сканирующая электронная микроскопия квантовой аналоговой ячейки. Трехлучевые структуры в центре — «острова», светло-серые области — подложка, темно-серые области...

Кухонные доски оказались источником микропластика в человеческой пище

Пластиковые доски становятся источником частиц микропластика в наших продуктах / ©Pixabay / Автор: Messiena Lucretius Ни для кого...

В честь нового запуска БАК: как физики разобрали Вселенную на шестеренки

Большой адронный коллайдер – самый большой ускоритель в истории. /(с)Maximilien Brice/CERN. / Автор: Messiena Lucretius Большой адронный коллайдер...

Инженеры рассчитали самый эффективный способ выиграть марафон за чужой счет

Кенийский легкоатлет Элиуд Кипчоге во время марафона в Вене. / © Alex Halada, AFP / Автор: Regulus Tremerus...

Инженеры напечатали 3D-структуру прочнее «аэрокосмического» сплава

Образец нового метаматериала в руках у одного из авторов исследования / © RMIT Метаматериалы — это искусственные материалы,...

От создания квантовой механики до второй квантовой революции

Ядро атома и вращающиеся по орбитам вокруг него частицы / ©QAM / Автор: Godefridus Victorinus Первая квантовая революция...

Предложен эксперимент для измерения массы информации

©CERN / Автор: Ольга Кузьмина Еще в прошлом веке Рольф Ландауэр из IBM предположил, что при стирании информации...

Большой адронный коллайдер «подсказал», где искать частицы темной материи

Визуализация продуктов столкновения двух пучков протонов в Большом адронном коллайдере. Идея искать следы частиц темной материи в данных,...

Ученые узнали, какой «отпечаток» на костях оставляет удар молнии

Образец кости до, во время и после (слева направо) воздействия на него тока / ©www.sciencealert.com / Автор: Анастасия...

Первые наблюдения сверхтяжелого кислорода-28 поставили под сомнение теории строения атомного ядра

Riken RI Beam Factory ускоряет тяжелые изотопы в кольцевом циклотроне, с помощью сверхпроводящих магнитов / © Riken, Nishina...

Редкий распад бозона Хиггса может закрыть поиски новой физики

Данные коллабораций ATLAS и CMS позволили зафиксировать необычный путь распада бозона Хиггса, с образованием фотона и Z-бозона, который...

Квантовый компьютер с «классической» архитектурой — в тысячу раз меньше кубитов и неплохая эффективность

Предложенная архитектура квантового компьютера. / © Gouzien & Sangouard / Автор: Visellia Orfius Кубит — квантовый аналог бита,...

Мимоза подсказала идею материала, способного к пассивному охлаждению и нагреванию

©Sten, Wikimedia Commons / Автор: Pinaria Caprarius Глобальные изменения климата усиливают многие экстремальные погодные явления. Волны жары и...

Магнитное поле помогло лазерам сжать капсулу с термоядерным топливом

Измеренное распределение плотности плазмы в момент сжатия в отсутствие магнитного поля (слева) и после приложения к капсуле поля...

Создано двухмерное сверхтвердое тело

Создано двухмерное сверхтвердое тело / ©www.sciencealert.com / Автор: Visellia Orfius Существование сверхтвердых тел было предсказано в 1969 году...

От мысленных экспериментов — к квантовому компьютеру

© 2017-2021 IonQ, Inc. / Автор: Михаил Григорьев Если первая квантовая революция начала ХХ века была, по сути,...