• Виктор
  • Статьи
  • 1 мин. чтения

Новое устройство поможет проводить самые маломасштабные измерения силы гравитации


Все материальные объекты обладают собственным гравитационным притяжением, независимо от того, насколько они малы / © Karl Dolenc, BeholdingEye, Getty Images

Гравитация — сила, которая притягивает друг к другу два тела, имеющих массу. А еще это одна из четырех фундаментальных сил Вселенной наряду с электромагнетизмом, сильными и слабыми ядерными взаимодействиями. Из четырех сил гравитация самая слабая, но зато и наиболее наглядная. Гравитационная сила позволяет людям ходить по Земле, а планетам — вращаться по орбите вокруг Солнца.

Гравитация любого объекта зависит от его массы и квадрата расстояния до него. Следовательно, чем массивнее тело, тем больше гравитационное притяжение, чем дальше, тем слабее. Один из способов обнаружить гравитацию у объекта в макромире — с помощью искажения света рядом с ним. 

Однако проделать то же самое на микроуровне (в квантовом мире) с частицами, которые находятся друг от друга на маленьких расстояниях и имеют такую же массу, непросто. Отчасти из-за слабости гравитации, которая возникает между этими крошечными объектами, но также и потому, что более крупные тела поблизости могут «зашумлять» гравитацию более мелких тел. Поэтому ученые пока точно не знают, что происходит с гравитацией на микроскопическом уровне, где доминируют квантовые эффекты. Уже давно многие физики ищут способ, который позволил бы провести результативные измерения квантовой гравитации в лабораторных условиях. 

Международная команда физиков из Великобритании, Нидерландов и Италии под руководством Хендрика Ульбрихта (Hendrik Ulbricht) из Саутгемптонского университета (Великобритания) разработала устройство, позволяющее измерить гравитационное притяжение в небольших масштабах. О своем изобретении ученые рассказали в статье, опубликованной в журнале Science Advances.  

Эти измерения удалось провести с помощью левитирующей магнитной частицы, состоящей из трех «склеенных» магнитов Nd 2Fe14B 0,25×0,25×0,25 миллиметра и массой 0,43 миллиграмма (разумеется, это все еще много для квантового мира). Частица поднималась в воздух под действием магнитного поля, чтобы противодействовать гравитации Земли. Магнитное поле создавали сверхпроводящие устройства — электромагнитные экранированные «ловушки». 

Чтобы исследовать поведение частицы, ученые поместили рядом с ней другой объект, большей (испытуемой) массой — около килограмма, который воздействовал на нее своим слабым гравитационным полем. Ученые смогли измерить это воздействие. Выяснилось, что под действием гравитации крупного тела частица смещалась на нанометры, а сила, действующая на частицу, составила всего 30 аттоньютонов (аттоньютон — одна миллиардная миллиардной доли ньютона). Это самая маленькая сила тяготения, когда-либо измеренная в экспериментах на сегодняшний день.

Установка физиков. Пружинная система (A), Холодильник, используемый для охлаждения, включая систему пружин (С). Магнитная частица, состоящая из трех магнитов размером 0,25×0,25х 0,25 миллиметров (D). Одна из ловушек (E) / © Hendrik Ulbricht

Во избежание влияния электрических сил и внутреннего воздействия тепла, ученые охладили частицу почти до абсолютного нуля — до около минус 273 градусов по Цельсию. Также физики использовали систему пружин для изоляции внешних вибраций, создаваемых вторым телом. 

По мнению авторов исследования, результаты их работы в будущем приведут к новым открытиям в науке о гравитации и квантовом мире.

«Наша новая техника, которая использует чрезвычайно низкие температуры и устройства для изоляции вибрации частицы, вероятно, сможет существенно продвинуть измерения в области квантовой гравитации», — пояснил Ульбрихт.

Следующий этап эксперимента — уменьшение испытуемой массы объекта до массы магнитной частицы, чтобы можно было измерить гравитационное притяжение, пока частица показывает квантовые эффекты, такие как запутанность или суперпозиция. Ульбрихт отметил, что добиться этого будет сложно, поскольку такие малые массы потребуют невероятной точности всех составляющих опыта, например, точного расстояния между частицей и воздействующим объектом. 

Также необходимо учитывать возможные погрешности, связанные с такими факторами, как температура и магнетизм. По словам физика, на достижение этих целей может уйти как минимум десятилетие. 

Отметим, что опыты, проведенные группой Ульбрихта, не первые в своем роде. В 2021 году физики измерили силу гравитационного притяжения божьей коровки, а точнее, золотого шарика с аналогичной массой — 90 миллиграммов. На тот момент это была самая маленькая сила тяготения, когда-либо измеренная в эксперименте.


Source: https://lib.zaplata.ru/stepanich/novoe-ystroistvo-pomojet-provodit-samye-malomasshtabnye-izmereniia-sily-gravitacii.html

Межтекстовые Отзывы
Посмотреть все комментарии
guest

Уникальный черновик величайшей работы Эйнштейна выставили на аукцион

Листы рукописи, датируемой 1913-1914 годами / ©Cristie’s / Автор: Михаил Григорьев Аукционный дом Christie’s ранее в этом ноябре...

Таяние ледников укоротит земной год к 2029-му

Ледники стали таять быстрее, и скорость вращения Земли замедлилась сильнее, чем раньше / © pxhere.com Астрономический год, то...

Получена новая кристаллическая форма кремния

Структура 4Н-кремния на фоне микрофотографии реального кристалла, полученной электронным микроскопом / ©Thomas Shiell, Timothy Strobel, Carnegie Institution for...

Кандидат в унобтаний: при получении ридберговских поляритонов драгоценные камни оказались лучше искусственных кристаллов

Кристалл минерала куприта, обладающего множеством необычных полупроводниковых свойств / © pinterest.org / Автор: Андрей Чернов На первый взгляд...

Предложен эксперимент для измерения массы информации

©CERN / Автор: Ольга Кузьмина Еще в прошлом веке Рольф Ландауэр из IBM предположил, что при стирании информации...

Ручная стирка снизила количество микропластика в воде

Хотя ручная стирка занимает больше времени, ее вредное влияние на состояние окружающей среды гораздо меньше / © expreso.press...

Физики решили «проблему Фейнмана» об инвертированном разбрызгивателе. Ответ очевидный, а вот объяснение — нет

Разбрызгиватель, работающий в инвертированном режиме (вода движется к центру устройства через трубки-сопла внутрь). Хорошо видны формирующиеся внутри него...

Физик посчитал количество информации в видимой Вселенной

© Anders Sandberg / flickr / Автор: Pinaria Caprarius О том, как измерить Вселенную с точки зрения содержащейся...

Сжимающаяся Вселенная столкнет нас в черную дыру. Но заметить конец света будет непросто

Пара из нейтронной звезды (на переднем плане) и черной дыры звездных масс (на заднем плане) перед их слиянием,...

Физики предложили два новых способа превращать инфракрасный свет в видимый

© Wikimedia / Автор: Ирина Мельникова Инфракрасным светом называют электромагнитное излучение с длиной волны большей, чем у красного...

Ученые узнали, почему так приятно разжевывать шоколад

Ученые узнали, почему так приятно разжевывать шоколад / ©Getty images / Автор: Иван Беляев Шоколад любит большинство россиян....

В погоне за миллионом кубитов

C. Lackner / Ars Electronica (CC BY-NC-ND) / Автор: Ptolemocratia Acerronius (Продолжение. Начало см. тут: 1, 2). В...

Китайские физики добились несомненного квантового превосходства

Juizhang вблизи. / © Chao-Yang Lu/University of Science and Technology of China / Автор: Анастасия Кожевникова Квантовым превосходством...

Удачный эксперимент на новосибирском электрон-позитронном коллайдере отодвинул границу «новой физики»

Комплекс ВЭПП-4 – ВЭПП / ©ИЯФ СО РАН / Автор: Messiena Lucretius Специалисты из Института ядерной физики имени...

Прорезиненный бетон стал пластичнее и мало потерял в прочности

Прорезиненный бетон стал пластичнее и мало потерял в прочности / © Dhipan Aravind Singaravel et al. Бетон —...

Кубиты идут на свист

Схематичное представление прецессии электронного спина в центре окраски. / © HZDR/Blaurock / Автор: Cloelia Andronicus В качестве кубитов...

Китайский термоядерный реактор установил новый рекорд непрерывной работы плазмы при высокой температуре

EAST / ©XinHua / Автор: Euclio Drusus Китайские ученые установили новый рекорд работы термоядерного реактора EAST. Во время...

Физики изучили ударные волны при открытии шампанского

©Svante Adermark / Автор: Дмитрий Жуков Игра шампанского начинается с «зарождения» — нуклеации — пузырьков на стеклянной стенке....

Парадокс чайного листа Эйнштейна привел к самопроизвольному формированию ценного материала

© Flickr / Автор: Ptolemocratia Acerronius В 1926 году Альберт Эйнштейн представил доклад для Прусской академии наук, который...

Ученые создали алмазные капсулы высокого давления и запечатали в них кристаллический аргон

Иллюстрация удержания и исследования фаз высокого давления в виде включений в нанокристаллическом алмазе / © Charles Zeng /...